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Abstract

The skewness of the return distribution causesaiyenmetric movements of volatilities to the

contemporaneous returns. Employing the skew nowdistibution, we propose a model that

estimates the measures for the volatility asymmetign the return distribution skewness. We

find that the sign and the magnitude of the asymmeteasures can be determined by the
skewness. Empirical evidence of DJIA from 1935 #@0& supports the hypothesis. This

relationship between the skewness and the vojatiBymmetry provides a clue to the unsettled
volatility puzzle: the market risk premium and ganditional market risk have a positive relation.
The empirical evidence contradicting the theorétadiction may have been caused by the
negatively skewed return distribution of the manbeittfolio.

|. Introduction

In finance, it is widely accepted wisdom that tladatility changes over time. There are
many theoretical volatility models that try to oamt its various aspects. Prominent
examples include the continuous time model by ldod White (1987) and the GARCH
model by Bollerslev (1986) for the discrete timéiag. One of interesting characteristics
of the equity return volatility is the asymmetriomements. For instance, Harvey (1989),
Turner et al. (1989) and Duffee (1995) report aitp@s contemporaneous relation
between volatilities and returns, while French let(#987), Campbell (1988), Nelson
(1991), Campbell and Hentschel (1992) and Glostex. €1993) find evidence that they
posses a negative relatfotn response to such empirical works, Nelson (1$®&poses
the EGARCH model which utilizes the weighted inniisa process to reproduce the
asymmetry. Also, Heston (1993) constructs a cootisttime stochastic volatility model
which replicates the asymmetry by allowing the Vereprocesses for the SDE’s of the
return and the volatility correlated.
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3 See Figure 1 for the example of the negative iiaif returns and volatilities. It depicts theqas and
both the realized and implied volatilities of thew Jones Industrial Average index (DJIA) and thePS&
500 index from 1998 to 2005. It is evident thathbotalized and implied volatilities are negatively
correlated with the price (thus, return) processes.




Figure 1
Price, Realized Volatility and Implied Volatility of DJIA (Left) and SP500 (Right)

Price, Realized Volatility and Implied Volatility of DJIA Price, Realized Volatility and Implied Volatility of SP500
——DJIA 60 days realized volatility —— SP500 60 days realized volatility
——DJIAimplied volatility from 60-days-to-expire call options —— SP500 implied volatility from 60-days-to-expire call options
——DJIA Price/150 —— SP500 Price/2000
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Efforts regarding the relationship between the emmoraneous returns and the realized
conditional volatilities, which is often called thelatility feedback effect, have been
mainly focused on identifying and calibrating promtochastic volatility models. For
instance, Scruggs (1998) employs a conditional faeter ICAPM model which includes
the long-term government bond returns as the setartdr, under the assumption that
the volatility process follows the EGARCH model.|Beslev and Zhou (2006) explain
the relationship with the Heston Model. Also, SmifB006) proposes a modified
stochastic volatility model that includes the viityt feedback effect as its stylized
feature. However, in spite of the immense attentioom both academics and
practitioners, no conclusive explanation on whatises such an asymmetry of the
volatility movement with respect to the contemp@auns returns has yet been made.

The main contribution of this paper is to identiflye fundamental aspect of the
asymmetric volatility movements. We advocate tha source of the asymmetric
volatility movements is the skewness of the retdigiribution. Evidence of the skewed
return distribution in the equity market has beeported repeatedly (Singleton and
Wingender (1986), Harvey and Siddique (1999, 208d&nnas and Nordman (2003),
Rydberg and Shephard (2003) and Cappuccioa e2@6f). We find that the skewness
of the return distribution determines the sign émel magnitude of the return-volatility

relationship: when the return distribution is pigly (negatively) skewed, the

correlation between the realized volatilities are treturns are positive (negative).
Furthermore, the magnitude of the asymmetry ine@®ass the absolute value of the
skewness increases. By adopting the skew normiibdison discussed in Azzalini and

Dalla Valle (1996), a model that explicitly yieldse asymmetry from the skewness of
the underlying return distribution is proposed. Alan empirical analysis for the model
is conducted on the daily return data of DJIA frb@85 to 2006.

This framework provides a clue to one of the lomgeitled puzzles: the market returns
and the contemporaneous volatilities relation. Mahngoretical asset pricing models



advocate a positive contemporaneous return-risktiogl of the market portfolio. For
instance, under the assumption of the single fatdpital asset pricing model (CAPM),
Merton (1980) and Pindyck (1984) have argued thatrisk premium of the market
portfolio has a positive linear relation with thearket risk, which is measured by the
market variance. However, as mentioned previoubkby relationship between the market
returns and the volatilities is insignificant oreevsignificantly negative (French et al.
(1987), Campbell (1988), Nelson and Glosten ef18193)). We claim that the opposing
empirical results to the theoretical framework nigave been caused by the skewness of
the return distribution: Since the measure of tlegket risk, the variance is an intrinsic
value, it cannot be directly measured. The conweatimeasure of the realized variances
is in fact conditioned on the realized returns. §hwhen the return distribution is
negatively skewed, the negative variance-returticei may be observed, even if the true
risk has a positive relation to the return.

The remainder of the paper is organized as folloM® following section explains the
relationship of the skewness to the volatility agyetry. Section Il provides the results
from the empirical test. Section IV discusses tlegkeat volatility puzzle in the context of
the skewed return distribution. Section V conclutiespaper.

[I. Asymmetries in the Volatility Movements and the Skewness of the
Return Distribution

In many articles, the asymmetric movements of Ydlas (o,) to the contemporaneous
returns (r,) are measured by the correlation between the metund the volatility
(corr(r,, g,)) or the slope from the simple regressio (in o, =a+ [, ). By

convention, we call the correlation and the sldmedsymmetry correlation (AC) and the
asymmetry slope (AS), respectably.

Asymmetry Correlation (AC) = corry(, o,)
Asymmetry Slope (AS) £ from the simple regression equatiop=a + S [,

The direction of the asymmetry is determined by $ign of AC and AS, and the
magnitude is measured by their absolute valuesnwiine sign is positive, the return and
the volatility have a positive relation, and thestation is considered to be strong if the
magnitude is large.

In order to have some intuition, let's consider @ienexamples that illustrate how the
skewness of the return distribution affects thatrehship between the volatilities and the
contemporaneous returns. First, suppose a randomablea X has a symmetric
distribution as illustrated on the left of FigureBy the symmetry, it is obvious that the
variance conditioned on the left half of the dkmtition, Var[ X | X < E(X)] is the same

as the one conditioned on the right tafr[ X | X > E(X . )hterpreting the random



variable X as the random return, the equality of the cond#iosariances implies that
the upside volatility is equivalent to the downsaie.

On the other hand, when the distribution is skewikd, equivalence of the volatilities
conditioned on the left and the right tail disappgedo see this, consider another random
variableY , whose distribution is negatively skewed as illatgd on the right of Figure 2.
Since the negative skewness means that the Iefs t@nger than the right, it is easy to
see that the variance conditioned on the downsidgementsVar[Y |Y < E(Y )Jis
larger than the upside conditional varianke[Y |Y > E(Y . Jherefore, if the return
distribution is negatively skewed, the volatilitie®asured during the periods of the stock
price dropping are more likely to be higher thae dmes during the upturns. Also, it is
evident that the relationship between returns aoldtlities would be reversed if the
distribution is positively skewed.

Figure 2
Simple lllustrations of the Effects of the Return Dstribution Skewness to the
Conditional Variances

pdf for a symmetric random variable X pdf for the negatively skewed random variable Y

| ot

| EX) | | E(Y)

Var[X | X < E(X)] =Var[X | X > E(X)] Var[Y |Y < E(Y)] >Var[Y |Y > E(Y)]

Although the illustration above provides an intugtiexample for the effect of the
skewness, it does not fully reflect the actual na@itm; we are interested in the
connections between the volatilityo{) and thecontemporary return (r, ), not the

volatility conditioned on the specific state of tinederlying return. The main difficulty of
modeling the real situation is that the volatilisy not directly observable. Since the
volatility is an intrinsic value, it only can be amured via directly observable data such
as the returns and the prices of the derivatives. iistance, the implied volatility is
estimated from the option prices, by inverting Biack-Scholes option pricing formula.
Alternatively, one can employ the realized volgtiliFor a given return, it is obtained by
calculating the sample standard deviation of theireturns. For example, the realized
volatility of the monthly return in July of 2007 the standard deviation of the daily
returnswithin the month. If the high frequency data is availaldee can acquire the
value from the minute-by-minute data, or even fitbin tick-by-tick data. In other words,
the realized volatility for a given period is thengple standard deviation of the
observations within the time frame. So, we can fdize the circumstance with the
following terms. For simplicity, we assume the umibe length is 1. Then, the return



during thet-th interval () is the sum oh returns ¢ ,r,,,...,, ,), which represent the
returns for then evenly divided sub-intervals of thh interval. That is,

ro=>Y 1, fort0{12...T}, where
r=In[R/R,I,

ri =IN[R.in/Ry(-yn] and

P, is the stock price observed sl {012,..T . }

Then, the corresponding volatility

0, =0 1,1 ety for t0{12,...,T}, where
a() is the sample standard deviation operator.

Therefore,

AC = the sample correlation of the pait {o,} for tU{12,....T} ,
AS = S from the linear regression equation=a + S, + &, for t0J{12,....,T}.

Next, we introduce the skew normal (SN) randomalde (Azzalini and Dalla Valle
(1996), Azzalini and Capitanio (1999)) to model thck returns with a skewed
distribution. A random variabl& ~ SN(a ), if

f (X a) =2¢p(X)P(ax) for OxO R, where
¢(X),P(x) are the pdf and the cdf ™  (0landa IR is the shape parameter.

The shape parameter determines the skewness of the distribution. Figuikustrates
the SN density functions for three different valoésr .

Figure 3
Densities of the SN distribution @ =5, 0 and -5)
a=5 a=0 a=-5
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The followings are the properties of the skew ndrdmstribution that will be exploited in
the model.

a.

b.

d.
e.
f.

The skewness of the distribution increases ashtapesparametein() increases.
Especially, whera =0, the distribution becomes standard normal.

E(X)=+2/md, Var(X)=1-2d%/ and y, = (4- ME(X)* | 2Var (X)*?,

where y, is the skewness factor amd= a /V1+a? .

The linear transfornyY = m+wX is a skew normal random variable, and denoted
by Y ~SN(mw?,a).

ForY in 3), E(Y) =m+WwE(X ), Var(Y) = w?Var(X), and the skewness js.

The sum of the skew normal random variables isragie@w normal.

¥, 1(-0.995,0.995).

To reveal the relationship between the volatilittymmetry and the skewness, we
conduct simulations based on the skewed normailalition, instead of deriving analytic
solutions for AC and AS. The idea is as followsf{ifgt, generate a set of sample returns
from the SN distributions with various skewnesslsy?2) then, evaluate the asymmetry
measures from the samples. We make an assumpt@bnthé returns are i.i.d. skew
normal for the simplicity of the tests. The simidatprocedures can be summarized as

follows.

1) For a given skewness levek,(), calculatea .

2) Since the mean and the variance of the basic skemal distribution §N(a))
changes asr changes (property b), compute the location @nd the scale
parameterw) so that the linear transformation viaandw (Y=m+wX), which
follows SN(mw, a ), will have the unconditional mean 0 and the umitonal
standard deviation 1. i.&(Y)=0 andVar(Y)=1. Note that when the skewness is
set to 0,Y becomes the standard normal distributiN(O(1)).

3) ConstructT i.i.d. n-by-1 vectors, whose entries are i.BN(mw, a ). T is the total
number of intervals and is the number of sub-intervals within an interyale
choose 1,000 and 10,000 foendT, respectably. Here, each entry of every n-by-
1 vector (rtyl,rt'z,...,rtyn)T represents the return for a sub-interval. The sdrall
entries of thet-th vector represents the return for th#h interval. Namely,

r, = Zin:lrt,i for t0{12,...,T}. By the property e, is skew normal, too.

4) Evaluate the contemporaneous realized volatilitythet t-th interval with the
sample standard deviation ofr,{,r,,,...,r,, }. That is, g, = (1, ,,f 5.....f, , ) for
t0{12,...T}.

5) Estimate AC and AS from and o, obtained from 3) and 4).

6) Repeat 1) ~ 5) for various skewness levels.



Figure 4
Simulation Results (y, =-0.995 (left), O (center) and .995 (right))

Skewness =0.995, AC =059, AS = 0.50 Skewness =0.000, AC =0.00, AS =0.00 Skewness =0.995, AC =0.60, AS = 0.50
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Figure 4 illustrates the results from the simulatfor y;=-0.995, 0 and 0.995. As we
expected, both AC and AS for the symmetric cage=0Q) are 0. However, when the
return distribution is negatively skeweg €-0.995), the test yields AC = -0.59 and AS =
-0.5. Also, from the simulation where the samplesdrawn from the positively skewed
distribution (), =0.995), the asymmetry measures have the same tmagsias the

negatively skewed ones with different signs (AC=8r@l AS=0.5). Furthermore, from

Figure 5, which depicts the values of AC and ASrirthe tests with eleven skewness

levels, it is found that the asymmetry measurespaoportionate to the skewness and
their relationship is almost linear.

The implication is now evident: since the volalg can be only estimated via observed
returns, and since the observations are randonretiized volatilities should appear to
be random,even when the unconditional volatility is constant. Furthermore, since the
skewness of the return distribution drives theeddhces in the frequencies between the
left and the right tail events, it causes the vlthatasymmetry. The sign of the

asymmetry is the same as the sign of the skewmesgsamagnitude is proportionate the
scale of the skewness.

Figure 5
Values of AC and AS from the Simulation
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[ll. Volatility Asymmetries and Return Distribution Skewness:
Evidence from DJIA

As illustrated in Figure 6, which depicts the samplaths of prices and volatilities
generated from the skew normal distributions, tbiatlity asymmetry is caused by the
skewness of the return distribution. In this seattiwe apply the model proposed in the
previous section to the daily data of Dow Jonesustidal Average Index (DJIA) from
1935 to 2006.

For the empirical test, the seventy-two years Isagiple period is divided into thirty-six
two-year long sub-periods and the asymmetry meag&€ and AS) are estimated from
both the historical data and the model for eachpmarind. The following describes the
detailed test procedure.

1) For each two-year long sub-period, estimate th@mditional mean, the
unconditional volatility and the skewness from kiigtorical daily returns of DJIA.

2) Calculate the asymmetry measures (AC and AS) bypeoimg the monthly
returns and the monthly volatilities (n = 20): thenthly return is the sum of 20
daily log-returns and the monthly volatility is teample standard deviation of the
daily returns.

3) Generate random vectors from a skew normal digtabwhose unconditional
mean, unconditional volatility and skewness aresdae as those from the
historical data: each element of the vector, the etiall elements and the sample
standard deviation of all elements of a vectoregpond to the daily return, the
monthly return and the monthly volatility, respdiita

4) From the randomly generated vectors, estimate AlCAS

5) Compare the asymmetry measures from the histatatal and the model.

Figure 6
Sample Paths of Log-Prices and Volatilities Generatl from SN Distributions
(Left: Skewness =-0.9, Right: Skewness = 0.9)

Log Price Process(InP =z r‘) generated by SN(-.9)

Log Price Process(lnP‘:z rt) generated by SN(.9)

Realized Volatility from the Return Process (n=60)

Realized Volatility from the Return Process (n=60)
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Figure 7
Comparisons of Asymmetry Measures from Historical @ta and the Model
(Left: AC, Right: AS)
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Figure 7 illustrates the test results. The cor@hst between the theoretical and the
empirical asymmetry measures are approximately, @&&h indicates that the skewness
of the return distribution plays a major role i tholatility asymmetry. However, unlike
the test for AC, the magnitude of AS from the modetl the data are significantly
different: AS for the historical data ranges froin5-to 1, while the one from the model
varies only from -0.6 to 0.4. This can be explaibgdhe difference in the fatness of the
tail distribution of the skew normal distributiondathe empirical return distribution. It is
well known that the distributions of stock retuare leptokurtic: their tails are fatter than
that of the normal distribution. But since the tail the skew normal distribution

converges to O at the similar rate to the normatrithution (exp(x>)), the extreme

events such as “Black Monday” are not well refldcte the model. Therefore, extreme
values are less likely to be drawn from the skewmab distribution, compared to the
“real” distribution, so the conditional volatiliseshould be less that the empirical ones.
Although further analysis is required regarding thagnitude of AS, considering that it
does not take into account of the stylized featwfethe stock returns such as the serial
dependence of the return series, seasonality assiljp@ changes in the first and the
second moments (expected return, unconditionaltiitfp the empirical tests strongly
back up the hypothesis.

We close this section with issues related to esimgathe skewness. Just like the
volatility, the skewness cannot be observed diyedtl is usually estimated from the
directly observable data such as the returns, se#imated skewness depends on the
sample. Thus, as we have argued about the volatiié estimation may not fully reflect
the true value, if such a thing exists. For inséartbe skewness of the daily log-returns of
DJIA from 1933 to 2006is -0.974. However, if the return on the day ofdék Monday”

® October 18 1987, is excluded, the skewness increases to60B\&, such an extreme
event is very rare, so it may be impossible toneste the skewness close to the true one,
if the length of the sample period is not sufficigmarge.

* Total number of trading days is 18,583.
® The log-return of DJIA on this day was -25.6%.



Figure 8
Effects of Changes in the First Moment to the Estimtion of the Skewness

Distribution for the first 1,000 daily returns Distribution for the second 1,000 daily returns

On the other hand, the dependence of the estinsauness to the other moments limits
the length of the sample period. To see this, damghe following extreme example: for
given 2,000 daily returns, the first and the secthrmisands are generated from different
distributions, where two distributions are equaflgewed, but their first moments
(expected returns) are so far from each other tlmatinterval can have a positive
probability for both of the distributions, as iltested in Figure 8. In this case, the
unconditional skewness is 0, although both distrdms are negatively skewed. Since
there is no clear cut for the changes in the tris¢ribution in real life, it is almost
impossible to distinguish the first 1,000 data p®ifnom the second, which may lead to
biased estimations. Thus, the length of the samt®d should not be too long, for it is
irrational to assume that the true expected retmmins constant over time.

Even worse, the skewness itself may change oves. timilar to the previous case,
suppose the first 1,000 daily returns follow a skewmal distribution with the skewness
of -0.5, while the second 1,000 are drawn from la@oskew normal with skewness of
0.5. If the first two moments of the distributiocs® the same, the unconditional skewness
of 2,000 returns would be 0. In reality, it is haaltell whether the returns follow a
symmetric distribution or they are generated frar tifferent distributions.

One of possible ways to decrease the bias regaidswugs above is to estimate the
skewness from the high frequency data with a redftishort sample length. The high
frequency sampling makes it more likely to catch #xtreme events, while the short
sample period may reduce the possibility of changehle distribution. Further analysis
is required.

IV. A Clue to the Volatility Puzzle

The effect of the skewness to the volatility asyrtrgnprovides an interesting insight to

one of the unsolved volatility puzzles: market retuand contemporaneous volatilities
relation. Accepting the CAPM is true, the marketkripremium and the conditional

market risk are predicted to have a positive re@hatHowever, many articles provide

evidence that the proxies of the market portfolasges a negative risk-return relation.
For instance, Campbell (1988) finds that the sinljplear regression analysis yields a
significantly negative risk-return relation for tERSP value weighted index. Glosten et
al. (1993) also find the similar results from thREP index.

10



The negative relation of the market return and dbetemporaneous market volatility

may well be caused by the flaws in the theoretioatlel, but it may be caused by the
skewness of the index returns. In most empiriaadiiss, the proxy of the market risk is
measured by the variance of excess returns of #r&anportfolio. However, as we have
seen in the previous sections, even when the uitcomal volatility is constant over time,

the conditional volatilities are negatively corteld with the returns, if the return

distribution is negatively skewed. Therefore, iétreturns of the market portfolio are
negatively skewed, the conventional approachemastig the volatility process may fail

to reflect the true market risk-return relationdéed, the daily log-returns of the CRSP
equal weighted index for the New York Stock Excharigppm 1926 to 2006 yield a

skewness of -0.519. Even after excluding the reamriBlack Monday”, the skewness

remains considerably negative with the value of50With the skewness of -0.519, the
estimated AC from the model is -0.34, which indésathat even though the market risk
premium is positively correlated with the “true” rkat risk, the stylized feature of its

proxy may have caused the negative relation inetmpirical tests. Further evidence
regarding the bias due to the definition of the kaarisk can be found in Harvey (2001)
and Ghysels et al. (2005). They show that the icglship between the returns and the
volatilities differs by the way to estimate the aiility.

Again, we are advocating neither the theoreticalirggs for the positive risk-return

relation are wrong, nor the volatility is an inappriate measure for the market risk.
Rather, we suspect that the conventional approacmeg be misled by the return

skewness. In order to overcome this problem, omeccanpensate the negative relation
due to the skewness from the observations over. thnether approach is to construct a
new measure for the risk which is free of asymmetaysed by the return distribution
skewness. For instance, instead of employing thadstrd deviation, one can fit the
return series to the skewed parametric models sschkhe skew normal, the skew t
(Azzalini and Capitanio (2003)) or the skew Cauchstribution (Arnold and Beaver

(2000), Behboodian et al. (2006)), and utilize $bale factor from the fitted model as the
measure of the market risk.

V. Conclusion and Future Research

Since the volatilities are intrinsic values, thalized volatilities are affected by the shape
of the distribution. When the return distributios skewed, the frequencies for “good
events” and “bad events” are different from eachent so the volatility shows an
asymmetric response to the realized return. We fived the negative relation of the
realized volatility and the contemporaneous retarcaused by the negative skewness of
the return distribution. The empirical evidencenir®JIA supports the hypothesis. This
finding gives a hint to the market risk-return plezzAccepting the CAPM is true, the
market risk premium and the conditional market rgsk predicted to have a positive
relation, but empirical evidence indicates thaindy not be the case. However, the test
results may have been biased due to the volaakymmetry caused by the negative
skewness. Daily returns of the CRSP equal weighddx from 1926 to 2006 yield a

11



skewness of -0.519, which may have caused the adioting empirical results to the
theoretical prediction.

There are several possible extensions. First, slmeeskew normal distribution does not
reflect the leptokurtic property of the stock reisirso we will apply skewed distributions
with fat tails, such as skew t and skew Cauchy&model. Second, in order to find out
whether the volatility puzzle is caused by the skess, it is required to construct a
method to decompose the market risk-return relatibm the volatility asymmetry and
the true risk-return relation. Last, considering tmportance of the skewness, the search
for better estimation methods is strongly needed.
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