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Abstract 
The skewness of the return distribution causes the asymmetric movements of volatilities to the 
contemporaneous returns. Employing the skew normal distribution, we propose a model that 
estimates the measures for the volatility asymmetry from the return distribution skewness. We 
find that the sign and the magnitude of the asymmetry measures can be determined by the 
skewness. Empirical evidence of DJIA from 1935 to 2006 supports the hypothesis. This 
relationship between the skewness and the volatility asymmetry provides a clue to the unsettled 
volatility puzzle: the market risk premium and the conditional market risk have a positive relation. 
The empirical evidence contradicting the theoretical prediction may have been caused by the 
negatively skewed return distribution of the market portfolio. 
 
 
I. Introduction 
 
In finance, it is widely accepted wisdom that the volatility changes over time. There are 
many theoretical volatility models that try to capture its various aspects. Prominent 
examples include the continuous time model by Hull and White (1987) and the GARCH 
model by Bollerslev (1986) for the discrete time setting. One of interesting characteristics 
of the equity return volatility is the asymmetric movements. For instance, Harvey (1989), 
Turner et al. (1989) and Duffee (1995) report a positive contemporaneous relation 
between volatilities and returns, while French et al. (1987), Campbell (1988), Nelson 
(1991), Campbell and Hentschel (1992) and Glosten et al. (1993) find evidence that they 
posses a negative relation3. In response to such empirical works, Nelson (1991) proposes 
the EGARCH model which utilizes the weighted innovation process to reproduce the 
asymmetry. Also, Heston (1993) constructs a continuous-time stochastic volatility model 
which replicates the asymmetry by allowing the Wiener processes for the SDE’s of the 
return and the volatility correlated. 

                                                 
1 Ph.D. Candidate, ORFE, Princeton University, contact: wookim@princeton.edu  
2 Professor, ORFE, Princeton University, contact: mulvey@princeton.edu  
3 See Figure 1 for the example of the negative relation of returns and volatilities. It depicts the prices and 
both the realized and implied volatilities of the Dow Jones Industrial Average index (DJIA) and the S&P 
500 index from 1998 to 2005. It is evident that both realized and implied volatilities are negatively 
correlated with the price (thus, return) processes. 
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Figure 1 
Price, Realized Volatility and Implied Volatility of DJIA (Left) and SP500 (Right) 
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Efforts regarding the relationship between the contemporaneous returns and the realized 
conditional volatilities, which is often called the volatility feedback effect, have been 
mainly focused on identifying and calibrating proper stochastic volatility models. For 
instance, Scruggs (1998) employs a conditional two-factor ICAPM model which includes 
the long-term government bond returns as the second factor, under the assumption that 
the volatility process follows the EGARCH model. Bollerslev and Zhou (2006) explain 
the relationship with the Heston Model. Also, Smith (2006) proposes a modified 
stochastic volatility model that includes the volatility feedback effect as its stylized 
feature. However, in spite of the immense attention from both academics and 
practitioners, no conclusive explanation on what causes such an asymmetry of the 
volatility movement with respect to the contemporaneous returns has yet been made.  
 
The main contribution of this paper is to identify the fundamental aspect of the 
asymmetric volatility movements. We advocate that the source of the asymmetric 
volatility movements is the skewness of the return distribution. Evidence of the skewed 
return distribution in the equity market has been reported repeatedly (Singleton and 
Wingender (1986), Harvey and Siddique (1999, 2000), Brannas and Nordman (2003), 
Rydberg and Shephard (2003) and Cappuccioa et al. (2006)). We find that the skewness 
of the return distribution determines the sign and the magnitude of the return-volatility 
relationship: when the return distribution is positively (negatively) skewed, the 
correlation between the realized volatilities and the returns are positive (negative). 
Furthermore, the magnitude of the asymmetry increases as the absolute value of the 
skewness increases. By adopting the skew normal distribution discussed in Azzalini and 
Dalla Valle (1996), a model that explicitly yields the asymmetry from the skewness of 
the underlying return distribution is proposed. Also, an empirical analysis for the model 
is conducted on the daily return data of DJIA from 1935 to 2006. 
 
This framework provides a clue to one of the long unsettled puzzles: the market returns 
and the contemporaneous volatilities relation. Many theoretical asset pricing models 
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advocate a positive contemporaneous return-risk relation of the market portfolio. For 
instance, under the assumption of the single factor capital asset pricing model (CAPM), 
Merton (1980) and Pindyck (1984) have argued that the risk premium of the market 
portfolio has a positive linear relation with the market risk, which is measured by the 
market variance. However, as mentioned previously, the relationship between the market 
returns and the volatilities is insignificant or even significantly negative (French et al. 
(1987), Campbell (1988), Nelson and Glosten et al. (1993)). We claim that the opposing 
empirical results to the theoretical framework might have been caused by the skewness of 
the return distribution: Since the measure of the market risk, the variance is an intrinsic 
value, it cannot be directly measured. The conventional measure of the realized variances 
is in fact conditioned on the realized returns. Thus, when the return distribution is 
negatively skewed, the negative variance-return relation may be observed, even if the true 
risk has a positive relation to the return. 
 
The remainder of the paper is organized as follows. The following section explains the 
relationship of the skewness to the volatility asymmetry. Section III provides the results 
from the empirical test. Section IV discusses the market volatility puzzle in the context of 
the skewed return distribution. Section V concludes the paper. 
 
 
II. Asymmetries in the Volatility Movements and the Skewness of the 
Return Distribution 
 
In many articles, the asymmetric movements of volatilities ( tσ ) to the contemporaneous 

returns ( tr ) are measured by the correlation between the return and the volatility 

(corr( tr , tσ )) or the slope from the simple regression (β  in tt r⋅+= βασ ). By 

convention, we call the correlation and the slope the asymmetry correlation (AC) and the 
asymmetry slope (AS), respectably. 
 

Asymmetry Correlation (AC) = corr(tr , tσ ) 

Asymmetry Slope (AS) =β  from the simple regression equation tt r⋅+= βασ  

 
The direction of the asymmetry is determined by the sign of AC and AS, and the 
magnitude is measured by their absolute values: when the sign is positive, the return and 
the volatility have a positive relation, and their relation is considered to be strong if the 
magnitude is large. 
 
In order to have some intuition, let’s consider simple examples that illustrate how the 
skewness of the return distribution affects the relationship between the volatilities and the 
contemporaneous returns. First, suppose a random variable X  has a symmetric 
distribution as illustrated on the left of Figure 2. By the symmetry, it is obvious that the 
variance conditioned on the left half of the distribution, )](|[ XEXXVar <  is the same 
as the one conditioned on the right tail, )](|[ XEXXVar > . Interpreting the random 
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variable X  as the random return, the equality of the conditional variances implies that 
the upside volatility is equivalent to the downside one.  
 
On the other hand, when the distribution is skewed, the equivalence of the volatilities 
conditioned on the left and the right tail disappears. To see this, consider another random 
variable Y , whose distribution is negatively skewed as illustrated on the right of Figure 2. 
Since the negative skewness means that the left tail is longer than the right, it is easy to 
see that the variance conditioned on the downside movements, )](|[ YEYYVar <  is 
larger than the upside conditional variance )](|[ YEYYVar > . Therefore, if the return 
distribution is negatively skewed, the volatilities measured during the periods of the stock 
price dropping are more likely to be higher than the ones during the upturns. Also, it is 
evident that the relationship between returns and volatilities would be reversed if the 
distribution is positively skewed. 
 
 

Figure 2 
Simple Illustrations of the Effects of the Return Distribution Skewness to the 

Conditional Variances 
 

 
 
 
Although the illustration above provides an intuitive example for the effect of the 
skewness, it does not fully reflect the actual mechanism; we are interested in the 
connections between the volatility (tσ ) and the contemporary return ( tr ), not the 

volatility conditioned on the specific state of the underlying return. The main difficulty of 
modeling the real situation is that the volatility is not directly observable. Since the 
volatility is an intrinsic value, it only can be measured via directly observable data such 
as the returns and the prices of the derivatives. For instance, the implied volatility is 
estimated from the option prices, by inverting the Black-Scholes option pricing formula. 
Alternatively, one can employ the realized volatility. For a given return, it is obtained by 
calculating the sample standard deviation of the intra-returns. For example, the realized 
volatility of the monthly return in July of 2007 is the standard deviation of the daily 
returns within the month. If the high frequency data is available, one can acquire the 
value from the minute-by-minute data, or even from the tick-by-tick data. In other words, 
the realized volatility for a given period is the sample standard deviation of the 
observations within the time frame. So, we can formalize the circumstance with the 
following terms. For simplicity, we assume the unit time length is 1. Then, the return 

E(X) 

)](|[)](|[ XEXXVarXEXXVar >=<  

pdf for a symmetric random variable X 

E(Y) 

)](|[)](|[ YEYYVarYEYYVar >><  

pdf for the negatively skewed random variable Y 
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during the t-th interval ( tr ) is the sum of n returns ( nttt rrr ,2,1, ,...,, ), which represent the 

returns for the n evenly divided sub-intervals of the t-th interval. That is,  
 

∑ =
= n

i itt rr
1 ,  for },...,2,1{ Tt ∈ , where 

]/ln[ 1−= ttt PPr ,  

]/ln[ /)1(/, nitnitit PPr −++=  and  

sP  is the stock price observed at },...2,1,0{ Ts ∈ . 

 
Then, the corresponding volatility 
 

),...,,(~
,2,1, ntttt rrrσσ =  for },...,2,1{ Tt ∈ , where 

)(~ ⋅σ  is the sample standard deviation operator. 
 
Therefore,  
 

AC = the sample correlation of the pair {tr , tσ } for },...,2,1{ Tt ∈ , 

AS = β  from the linear regression equation ttt r εβασ +⋅+=  for },...,2,1{ Tt ∈ . 

 
Next, we introduce the skew normal (SN) random variable (Azzalini and Dalla Valle 
(1996), Azzalini and Capitanio (1999)) to model the stock returns with a skewed 
distribution. A random variable X ~ SN(α ), if 
 

)()(2);( xxxf X αφα Φ=  for Rx ∈∀ , where 
)(),( xx Φφ  are the pdf and the cdf of )1,0(N , and R∈α  is the shape parameter. 

 
The shape parameter α  determines the skewness of the distribution. Figure 3 illustrates 
the SN density functions for three different values of α . 
 
 

Figure 3 
Densities of the SN distribution (α =5, 0 and -5) 
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The followings are the properties of the skew normal distribution that will be exploited in 
the model. 
 

a. The skewness of the distribution increases as the shape parameter (α ) increases. 
Especially, when α =0, the distribution becomes standard normal. 

b. dXE π/2)( = , π/21)( 2dXVar −=  and 2/33
1 )(2/)()4( XVarXEπγ −= , 

where 1γ  is the skewness factor and 21/ αα +=d . 
c. The linear transform wXmY +=  is a skew normal random variable, and denoted 

by ),,(~ 2 αwmSNY . 

d. For Y  in 3), )()( XwEmYE += , )()( 2 XVarwYVar = , and the skewness is 1γ . 
e. The sum of the skew normal random variables is again skew normal. 
f. 1γ ∈(-0.995,0.995). 

 
To reveal the relationship between the volatility asymmetry and the skewness, we 
conduct simulations based on the skewed normal distribution, instead of deriving analytic 
solutions for AC and AS. The idea is as follows: 1) first, generate a set of sample returns 
from the SN distributions with various skewness levels, 2) then, evaluate the asymmetry 
measures from the samples. We make an assumption that the returns are i.i.d. skew 
normal for the simplicity of the tests. The simulation procedures can be summarized as 
follows. 
 

1) For a given skewness level (1γ ), calculate α .  
2) Since the mean and the variance of the basic skew normal distribution (SN(α )) 

changes as α  changes (property b), compute the location (m) and the scale 
parameter (w) so that the linear transformation via m and w (Y=m+wX), which 
follows SN(m,w,α ), will have the unconditional mean 0 and the unconditional 
standard deviation 1. i.e. E(Y)=0 and Var(Y)=1. Note that when the skewness is 
set to 0, Y becomes the standard normal distribution (N(0,1)). 

3) Construct T i.i.d. n-by-1 vectors, whose entries are i.i.d SN(m,w,α ). T is the total 
number of intervals and n is the number of sub-intervals within an interval. We 
choose 1,000 and 10,000 for n and T, respectably. Here, each entry of every n-by-
1 vector ( nttt rrr ,2,1, ,...,, )T represents the return for a sub-interval. The sum of all 

entries of the t-th vector represents the return for the t-th interval. Namely, 

∑ =
= n

i itt rr
1 ,  for },...,2,1{ Tt ∈ . By the property e, tr  is skew normal, too. 

4) Evaluate the contemporaneous realized volatility at the t-th interval with the 
sample standard deviation of { nttt rrr ,2,1, ,...,, }. That is, ),...,,(~

,2,1, ntttt rrrσσ =  for 

},...,2,1{ Tt ∈ . 

5) Estimate AC and AS from tr  and tσ  obtained from 3) and 4). 

6) Repeat 1) ~ 5) for various skewness levels. 
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Figure 4 
Simulation Results ( 1γ =-0.995 (left), 0 (center) and .995 (right)) 

 

 
 
Figure 4 illustrates the results from the simulation for 1γ =-0.995, 0 and 0.995. As we 

expected, both AC and AS for the symmetric case (1γ =0) are 0. However, when the 

return distribution is negatively skewed (1γ =-0.995), the test yields AC = -0.59 and AS = 
-0.5. Also, from the simulation where the samples are drawn from the positively skewed 
distribution ( 1γ =0.995), the asymmetry measures have the same magnitudes as the 
negatively skewed ones with different signs (AC=0.6 and AS=0.5). Furthermore, from 
Figure 5, which depicts the values of AC and AS from the tests with eleven skewness 
levels, it is found that the asymmetry measures are proportionate to the skewness and 
their relationship is almost linear.  
 
The implication is now evident: since the volatilities can be only estimated via observed 
returns, and since the observations are random, the realized volatilities should appear to 
be random, even when the unconditional volatility is constant. Furthermore, since the 
skewness of the return distribution drives the differences in the frequencies between the 
left and the right tail events, it causes the volatility asymmetry. The sign of the 
asymmetry is the same as the sign of the skewness and its magnitude is proportionate the 
scale of the skewness.  
 

Figure 5 
Values of AC and AS from the Simulation 
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III. Volatility Asymmetries and Return Distribution  Skewness: 
Evidence from DJIA 
 
As illustrated in Figure 6, which depicts the sample paths of prices and volatilities 
generated from the skew normal distributions, the volatility asymmetry is caused by the 
skewness of the return distribution. In this section, we apply the model proposed in the 
previous section to the daily data of Dow Jones Industrial Average Index (DJIA) from 
1935 to 2006.  
 
For the empirical test, the seventy-two years long sample period is divided into thirty-six 
two-year long sub-periods and the asymmetry measures (AC and AS) are estimated from 
both the historical data and the model for each sub-period. The following describes the 
detailed test procedure. 
 

1) For each two-year long sub-period, estimate the unconditional mean, the 
unconditional volatility and the skewness from the historical daily returns of DJIA. 

2) Calculate the asymmetry measures (AC and AS) by comparing the monthly 
returns and the monthly volatilities (n = 20): the monthly return is the sum of 20 
daily log-returns and the monthly volatility is the sample standard deviation of the 
daily returns. 

3) Generate random vectors from a skew normal distribution whose unconditional 
mean, unconditional volatility and skewness are the same as those from the 
historical data: each element of the vector, the sum of all elements and the sample 
standard deviation of all elements of a vector correspond to the daily return, the 
monthly return and the monthly volatility, respectably. 

4) From the randomly generated vectors, estimate AC and AS. 
5) Compare the asymmetry measures from the historical data and the model. 

 
 
 
 

Figure 6 
Sample Paths of Log-Prices and Volatilities Generated from SN Distributions  

(Left: Skewness = -0.9, Right: Skewness = 0.9) 
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Figure 7 
Comparisons of Asymmetry Measures from Historical Data and the Model 

(Left: AC, Right: AS) 
 

 
 
Figure 7 illustrates the test results. The correlations between the theoretical and the 
empirical asymmetry measures are approximately 0.69, which indicates that the skewness 
of the return distribution plays a major role in the volatility asymmetry. However, unlike 
the test for AC, the magnitude of AS from the model and the data are significantly 
different: AS for the historical data ranges from -1.5 to 1, while the one from the model 
varies only from -0.6 to 0.4. This can be explained by the difference in the fatness of the 
tail distribution of the skew normal distribution and the empirical return distribution. It is 
well known that the distributions of stock returns are leptokurtic: their tails are fatter than 
that of the normal distribution. But since the tail of the skew normal distribution 
converges to 0 at the similar rate to the normal distribution ( )exp( 2x− ), the extreme 
events such as “Black Monday” are not well reflected in the model. Therefore, extreme 
values are less likely to be drawn from the skew normal distribution, compared to the 
“real” distribution, so the conditional volatilities should be less that the empirical ones. 
Although further analysis is required regarding the magnitude of AS, considering that it 
does not take into account of the stylized features of the stock returns such as the serial 
dependence of the return series, seasonality and possible changes in the first and the 
second moments (expected return, unconditional volatility), the empirical tests strongly 
back up the hypothesis. 
 
We close this section with issues related to estimating the skewness. Just like the 
volatility, the skewness cannot be observed directly. It is usually estimated from the 
directly observable data such as the returns, so the estimated skewness depends on the 
sample. Thus, as we have argued about the volatility, the estimation may not fully reflect 
the true value, if such a thing exists. For instance, the skewness of the daily log-returns of 
DJIA from 1933 to 20064 is -0.974. However, if the return on the day of “Black Monday” 
5, October 19th 1987, is excluded, the skewness increases to -0.036. But, such an extreme 
event is very rare, so it may be impossible to estimate the skewness close to the true one, 
if the length of the sample period is not sufficiently large. 

                                                 
4 Total number of trading days is 18,583. 
5 The log-return of DJIA on this day was -25.6%. 
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Figure 8 
Effects of Changes in the First Moment to the Estimation of the Skewness 

 

 
 
 
On the other hand, the dependence of the estimated skewness to the other moments limits 
the length of the sample period. To see this, consider the following extreme example: for 
given 2,000 daily returns, the first and the second thousands are generated from different 
distributions, where two distributions are equally skewed, but their first moments 
(expected returns) are so far from each other that no interval can have a positive 
probability for both of the distributions, as illustrated in Figure 8. In this case, the 
unconditional skewness is 0, although both distributions are negatively skewed. Since 
there is no clear cut for the changes in the true distribution in real life, it is almost 
impossible to distinguish the first 1,000 data points from the second, which may lead to 
biased estimations. Thus, the length of the sample period should not be too long, for it is 
irrational to assume that the true expected return remains constant over time. 
 
Even worse, the skewness itself may change over time. Similar to the previous case, 
suppose the first 1,000 daily returns follow a skew normal distribution with the skewness 
of -0.5, while the second 1,000 are drawn from another skew normal with skewness of 
0.5. If the first two moments of the distributions are the same, the unconditional skewness 
of 2,000 returns would be 0. In reality, it is hard to tell whether the returns follow a 
symmetric distribution or they are generated from two different distributions.  
 
One of possible ways to decrease the bias regarding issues above is to estimate the 
skewness from the high frequency data with a relatively short sample length. The high 
frequency sampling makes it more likely to catch the extreme events, while the short 
sample period may reduce the possibility of changes in the distribution. Further analysis 
is required. 
 
 
IV. A Clue to the Volatility Puzzle 
 
The effect of the skewness to the volatility asymmetry provides an interesting insight to 
one of the unsolved volatility puzzles: market returns and contemporaneous volatilities 
relation. Accepting the CAPM is true, the market risk premium and the conditional 
market risk are predicted to have a positive relation. However, many articles provide 
evidence that the proxies of the market portfolio posses a negative risk-return relation. 
For instance, Campbell (1988) finds that the simple linear regression analysis yields a 
significantly negative risk-return relation for the CRSP value weighted index. Glosten et 
al. (1993) also find the similar results from the CRSP index. 

Distribution for the first 1,000 daily returns Distribution for the second 1,000 daily returns 
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The negative relation of the market return and the contemporaneous market volatility 
may well be caused by the flaws in the theoretical model, but it may be caused by the 
skewness of the index returns. In most empirical studies, the proxy of the market risk is 
measured by the variance of excess returns of the market portfolio. However, as we have 
seen in the previous sections, even when the unconditional volatility is constant over time, 
the conditional volatilities are negatively correlated with the returns, if the return 
distribution is negatively skewed. Therefore, if the returns of the market portfolio are 
negatively skewed, the conventional approaches estimating the volatility process may fail 
to reflect the true market risk-return relation. Indeed, the daily log-returns of the CRSP 
equal weighted index for the New York Stock Exchange from 1926 to 2006 yield a 
skewness of -0.519. Even after excluding the return on “Black Monday”, the skewness 
remains considerably negative with the value of -0.15. With the skewness of -0.519, the 
estimated AC from the model is -0.34, which indicates that even though the market risk 
premium is positively correlated with the “true” market risk, the stylized feature of its 
proxy may have caused the negative relation in the empirical tests. Further evidence 
regarding the bias due to the definition of the market risk can be found in Harvey (2001) 
and Ghysels et al. (2005). They show that the relationship between the returns and the 
volatilities differs by the way to estimate the volatility. 
 
Again, we are advocating neither the theoretical settings for the positive risk-return 
relation are wrong, nor the volatility is an inappropriate measure for the market risk. 
Rather, we suspect that the conventional approaches may be misled by the return 
skewness. In order to overcome this problem, one can compensate the negative relation 
due to the skewness from the observations over time. Another approach is to construct a 
new measure for the risk which is free of asymmetry caused by the return distribution 
skewness. For instance, instead of employing the standard deviation, one can fit the 
return series to the skewed parametric models such as the skew normal, the skew t 
(Azzalini and Capitanio (2003)) or the skew Cauchy distribution (Arnold and Beaver 
(2000), Behboodian et al. (2006)), and utilize the scale factor from the fitted model as the 
measure of the market risk. 
 
 
V. Conclusion and Future Research 
 
Since the volatilities are intrinsic values, the realized volatilities are affected by the shape 
of the distribution. When the return distribution is skewed, the frequencies for “good 
events” and “bad events” are different from each other, so the volatility shows an 
asymmetric response to the realized return. We find that the negative relation of the 
realized volatility and the contemporaneous return is caused by the negative skewness of 
the return distribution. The empirical evidence from DJIA supports the hypothesis. This 
finding gives a hint to the market risk-return puzzle. Accepting the CAPM is true, the 
market risk premium and the conditional market risk are predicted to have a positive 
relation, but empirical evidence indicates that it may not be the case. However, the test 
results may have been biased due to the volatility asymmetry caused by the negative 
skewness. Daily returns of the CRSP equal weighted index from 1926 to 2006 yield a 
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skewness of -0.519, which may have caused the contradicting empirical results to the 
theoretical prediction. 
 
There are several possible extensions. First, since the skew normal distribution does not 
reflect the leptokurtic property of the stock returns, so we will apply skewed distributions 
with fat tails, such as skew t and skew Cauchy to the model. Second, in order to find out 
whether the volatility puzzle is caused by the skewness, it is required to construct a 
method to decompose the market risk-return relation into the volatility asymmetry and 
the true risk-return relation. Last, considering the importance of the skewness, the search 
for better estimation methods is strongly needed.  
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